Providing effective evaluation of economic, social and medical programs has become an increasingly important requirement for both public and private institutions. This school seeks therefore, to provide participants with the requisite tools, both theoretical and applied, for the correct implementation of modern micro-econometric methods for implementing program evaluation using Stata. As such, the program has been developed to encompass both: standard statistical methods of program evaluation: regression-adjustment, matching, selection-models and difference-in-differences methodologies; and the more advanced econometric techniques: for example, instrumental variables, endogenous regression-adjustment and regression discontinuity design.

The school opens with an introductory one day course (Module A) to the statistical package Stata, during which participants will be provided with the necessary tools to enable them to use Stata independently and actively participate in the applied empirical Lab sessions during the course of the week. Module B (Introductory Econometrics) running from day two to four, offers participants the opportunity to acquire, or simply refresh, the econometric techniques required to follow and actively participate in the empirical sessions during the course of the week. Both Modules A and B are optionally, attendance will depend on the individual participant's background.

At the end of the school participants are expected to be able to master complex evaluation design by: identifying the type of data required in their specific policy framework; evaluating which specific econometric method is more appropriate for the analysis in hand; and finally extracting policy recommendations from the obtained results. Participants should leave the course being in a position to autonomously implement, with the aid of the Stata routines utilized during the sessions, the theories and methodologies discussed during the course of the school.

In common with TStat’s course philosophy, each individual session is composed of both a theoretical component (in which the techniques and underlying principles behind them are explained), and an applied (hands-on) segment, during which participants have the opportunity to implement the techniques using real data under the watchful eye of the course tutor. Throughout the school, theoretical sessions are reinforced by case study examples, in which the course tutor discusses and highlights potential pitfalls and the advantages of individual techniques. Providing effective evaluation of economic, social and medical programs has become an increasingly important requirement for both public and private institutions. The Summer School seeks therefore to provide participants with the requisite tools, both theoretical and applied, for the correct implementation of modern micro-econometric methods for implementing program evaluation using Stata.

https://www.tstattraining.eu/training/econometrics-program-evaluation/
ECONOMETRICS FOR PROGRAM EVALUATION

TARGET AUDIENCE
Researchers and professionals working in public and private institutions needing to undertake econometric program evaluation analysis using micro data. Although these methodologies are commonly used to evaluate policy interventions in, for example, the labour market, investment activities of enterprises, education policy, regional development, etc., they can in fact be used across a variety of studies, such as public health sector evaluation, which aim to estimate the ex-post impact of a given intervention or project on specific targets.

PROGRAM

INTRODUCTION TO STATA

1. Stata’s GUI
2. File types in Stata
3. Working interactively in Stata
4. Saving output: the log file
5. Interrupting Stata
6. Loading Stata databases
7. The Log Output File
8. Saving databases in Stata
9. Exiting the software

SESSION I:
INTRODUCTION
GETTING STARTED

SESSION II:
PRELIMINARY
DATA ANALYSIS

SESSION III:
DATA MANAGEMENT

SESSION IV:
IMPORTING DATA FROM
SPREADSHEETS

https://www.tstattraining.eu/training/econometrics-program-evaluation/
INTRODUCTORY ECONOMETRICS

DAY 1: THE LINEAR REGRESSION MODEL

1. OLS Estimation in Stata
2. OLS estimation in the presence of qualitative explanatory variables
3. Including factor variables in the estimation process
4. Fixed-effect panel-data models

DAY 2: ENDOGENEITY AND INSTRUMENTAL VARIABLES ESTIMATORS

1. Endogeneity and bias in OLS estimators
2. Instrumental variables and GMM estimators
3. Implementation in Stata
4. Testing for exogeneity
5. Tests of over-identifying restrictions
6. Testing for weak instruments
7. Tests and robustness in Stata

DAY 3: LIMITED DEPENDENT VARIABLE MODELS

1. Binary outcome models
2. Goodness of fit and specification tests
3. Implementation in Stata
4. Selection models
5. Implementation in Stata
ECONOMETRICS FOR PROGRAM EVALUATION

PROGRAM EVALUATION

DAY 1: ECONOMETRICS OF PROGRAM EVALUATION

1. Concept of counterfactual causality
2. Experimental and quasi-experimental settings
3. Non-random sampling: selection on observables and selection on unobservables
4. Definition of treatment effects: types of effects and potential outcome
5. Notation and working hypotheses: SUTVA, CIA and CMI

Day 1: Econometrics of Program Evaluation

Session I: Introduction to the Econometrics of Program Evaluation

- Available econometric methods: limits and advantages
- Stata for effective program evaluation: user-written commands and the teffects package

Session II: Overview of the Methods

- The control function regression approach
- Non-linear models
- Stata implementation with the commands teffects ra and ivtreatreg

Session III: Linear and Non-linear Regression Adjustment

DAY 2: MATCHING AND REWEIGHTING

1. The selection on observable setting
2. Identification conditions for Matching
3. Matching in practice: tests and sensitivity analysis
4. Implementation in Stata

Day 2: Matching and Reweighting

Session I: Matching

- The logic of Reweighting
- Reweighting on the propensity score
- Analytical and bootstrap standard errors
- Implementation in Stata

Session II: Reweighting

DAY 3: INSTRUMENTAL-VARIABLES AND SELECTION MODELS

1. The logic of IV
2. Endogeneity and consistent estimation
3. Types of IV methods
4. Implementation in Stata

Day 3: Instrumental-Variables and Selection Models

Session I: Instrumental-Variables

- The logic of ERA
- The residual control-function approach
- Implementation in Stata

Session II: Endogenous Regression Adjustment

Session III: Selection Model

- Dealing with selection-on-unobservables
- Heckman selection model (heckit)
- Implementation in Stata

https://www.tstattraining.eu/training/econometrics-program-evaluation/
ECONOMETRICS FOR PROGRAM EVALUATION

DAY 4: DIFFERENCE-IN-DIFFERENCES AND SYNTHETIC CONTROL METHOD

1. DID statistical setting
2. DID with longitudinal data
3. DID with repeated cross-section
4. Pre-post treatment dynamic effect (DDID)
5. Implementation in Stata

SESSION I:
DIFFERENCE-IN-DIFFERENCES (DID)

SESSION II:
SYNTHETIC CONTROL METHOD

1. The Synthetic Control Method (SCM): statistical setting
2. Parametric SCM and Stata implementation via synth
3. Nonparametric SCM and Stata implementation via npsynth
4. The placebo test and graphing
5. Stata applications on real datasets

DAY 5: LOCAL AVERAGE TREATMENT EFFECT (LATE) AND REGRESSION DISCONTINUITY DESIGN (RD)

SESSION III:
LOCAL AVERAGE TREATMENT EFFECT (LATE)

SESSION IV:
REGRESSION DISCONTINUITY DESIGN (RD)

1. RD as a local approximation of a natural experiment
2. Sharp RD: setting and estimation
3. Fuzzy RD: setting and estimation
4. RD validation checklist
5. Assessing RD external validity via the treatment effect derivative (TED)
6. Stata implementation via rdrobust and ted

DAY 6: MULTIVALUED/QUANTILE TREATMENT EFFECT AND DOSE-RESPONSE MODELS

SESSION V:
MULTIVALUED/QUANTILE TREATMENT EFFECT

SESSION VI:
DOSE-RESPONSE MODELS

1. Causal inference with multivalued treatment
2. Statistical setting and estimation under conditional independence
3. Application using the Stata command poparms
4. Estimation of quantile treatment effect under conditional independence

1. The logic of dose-response models
2. The Generalized Propensity Score (GPS) approach
3. Application of the GPS via the Stata commands gpscore and doseresponse
4. Regression-Adjustment based dose-response models (RADR)
5. Application of the RADR via the Stata command ctreatreg

https://www.tstattraining.eu/training/econometrics-program-evaluation/
ECONOMETRICS FOR PROGRAM EVALUATION

USEFUL TEXTS

REGISTRATION FEES

PARTICIPATION FOR THE ENTIRE WEEK (Modules A, B and C – 10 days)

Students*: € 3799.00
Academic: € 4470.00
Non-Profit/Public Research Centres: € 4920.00
Commercial: € 5370.00

MODULES A and B (4 days)

Students*: € 1485.00
Academic: € 1755.00
Non-Profit/Public Research Centres: € 1935.00
Commercial: € 2115.00

MODULE B (3 days)

Students*: € 1115.00
Academic: € 1318.00
Non-Profit/Public Research Centres: € 1450.00
Commercial: € 1587.00

MODULE C (7 days)

Students*: € 2310.00
Academic: € 2715.00
Non-Profit/Public Research Centres: € 2985.00
Commercial: € 3255.00

*To be eligible for student prices, participants must provide proof of their full-time student status for the current academic year.

Fees are subject to VAT (applied at the current Italian rate of 22%). Under current EU fiscal regulations, VAT will not however applied to companies, Institutions or Universities providing a valid tax registration number.

Please note that a non-refundable deposit of €100.00 for students and €200.00 for Academic, Non-Profit/Public Research Centres and Commercial participants, is required to secure a place and is payable upon registration. The number of participants is limited to 15. Places will be allocated on a first come, first serve basis.
ECONOMETRICS FOR PROGRAM EVALUATION

Course fees cover: i) teaching materials (copies of lecture slides, databases and Stata routines used during the summer school; ii) a temporary licence of Stata valid for 30 days from the day before the beginning of the school; iii) half board accommodation (breakfast, lunch and coffee breaks) in a single room at the CISL Studium Centre or equivalent (11 nights for entire school, 4 nights for Modules A and B, 3 nights for Module B, 7 nights for Module C). Participants requiring accommodation the night of the final day of the school, are requested to contact us as soon as possible.

To maximize the usefulness of this summer school, we strongly recommend that participants bring their own laptops with them, to enable them to actively participate in the empirical sessions.

Individuals interested in attending this summer school must return their completed registration forms by email (training@tstat.eu) to TStat by the 1st August 2019.

COURSE LEADERS

Una-Louise BELL
TStat Training
Giovanni BRUNO
Bocconi University
Giovanni CERULLI
National Research Council of Italy
Roberto GABRIELE
University of Trento

CONTACTS

Monica Gianni
TStat Training | Kleebergstraße, 8
D-60322 Frankfurt am Main

TStat S.r.l. | Via Rettangolo, 12-14
I-67039 Sulmona (AQ)
T. +39 0864 210101

training@tstat.eu
www.tstattraining.eu
www.tstat.eu

Further details regarding our registration procedures, including our commercial terms and conditions, can be found at https://www.tstattraining.eu/training/econometrics-program-evaluation/